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Abstract
Heart rate variability (HRV) from electrocardiograms (ECG) is a well-known 
diagnostic method for the assessment of autonomic nervous function of  
the heart. A more convenient approach to assess cardiac function is 	
by using photoplethysmography (PPG) waveforms where pulse rate 
variability (PRV) replaces HRV. However, the unavailability of robust 
detection algorithms for PPG signals has prevented the medical market 
from providing clinical diagnosis using PRV and from measuring biological 
information for wellness purposes, such as sleep stage, stress state, 
and fatigue.

This article provides a robust peak and onset detection algorithm for 	
beat-to-beat pulse interval analysis using PPG signals. We demonstrate our 
method through large data collection with the Analog Devices, Inc. (ADI) 
multisensory watch platform with high coverage, sensitivity, and low 
root mean square of successive difference (RMSSD) as compared to the 
beat-to-beat results from ECG signals.

Introduction
Heart rate (HR) monitoring is a key feature in many existing wearable 
and clinical devices but a function to measure the continuous heart rate 
variability using a beat-to-beat pulse interval has not yet been provided 
with these devices. HRV consists of changes in the time intervals between 
consecutive heartbeats called interbeat intervals extracted from an 
electrocardiogram (ECG).1 HRV contains well-known biometric information 
that reflects the sympathetic and parasympathetic activities of the 
autonomic nervous system.2 Researchers have widely used HRV as a 
tool to support clinical diagnosis and measure biological information for 
wellness purposes, such as sleep stage, stress state, and fatigue.2, 3 
Given the technical requirements of ECG measurements, the signal may 
not always be available in accident/catastrophe sites, battlefields, or 
areas where ECG can cause electrical interference.4

Pulse rate variability extracted from photoplethysmography signals could 	
be used as an alternative to HRV.5, 6, 7 The PPG signals are obtained by 	

illuminating human skin using an LED and by measuring the intensity 	
changes due to blood flow in the reflected light by a photodiode. 

Furthermore, PPG can provide relevant information about the cardiovascular 
system, such as heart rate, arterial pressure, stiffness index, pulse transit 
time, pulse wave velocity, cardiac output, arterial compliance, and peripheral 
resistance.8, 9, 10 However, the performance of PPG-based algorithms can 
be degraded by poor blood perfusion, ambient light, and, most importantly, 
motion artifacts (MA).11 Many signal processing techniques, including 
the ADI motion rejection and frequency tracking algorithm, have been 
proposed to remove the MA noise by using a three-axis acceleration 
sensor placed close to the PPG sensor.

It is important to extract significant points such as systolic peaks, onsets, 
and dicrotic notches from PPG waveforms accurately for PRV analysis.12 
The onset of the PPG waveform is due to the commencement of blood 
expulsion from the heart to the aorta, while the dicrotic notch is the end 
of blood ejection or the closure of the aortic valve. The unavailability of robust 
detection algorithms for PPG signals has, at least partially, prevented 
researchers from fully conducting PRV analysis using PPG. Some previous 
work on PRV ignores the fiducial points,13 some reported using manual 
or empirical detection of the systolic peaks,14 and some are based on 
nonvalidated time window-based algorithms to obtain the pulse peak.15

This article proposes a robust peak and onset detection algorithm that uses 
a delineation method originally proposed for arterial blood pressure (ABP) 
waveforms.16 It is important to note that PPG signals using wrist-worn 
wearable devices contain many motion artifacts, baseline fluctuations, 
reflected waves, and other noise that can affect the behavior of detection 
algorithms.6 Therefore, the data is preprocessed first before feeding it 
to the beat-to-beat extraction model. The automatic delineator used in 
this work is a hybrid approach in which different preprocessed signals 
from raw PPG and the first derivative of the signals are used to extract 
both the peaks and onsets. We use a large database collected using our 
ADI watch platform that provides synchronized PPG and ECG signals. 
In terms of memory footprint, this algorithm is light and can be used as 
an embedded algorithm in the ADI watch platform. The algorithm is 
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validated and compared with the beat-to-beat results from ECG signals 
using coverage, sensitivity, positive productivity, and the root mean square 
of successive difference.17

Beat-to-Beat Algorithm Based 								      
on the PPG Morphology
In this section, we explain the details of the proposed beat-to-beat 
algorithm for wrist PPG signals comprised of (i) preprocessing, and (ii) 
high resolution beat-to-beat extraction modules. A block diagram of the 
algorithm is shown in Figure 1.

Preprocessing
The susceptibility of the PPG signal to poor blood perfusion of the peripheral 
tissues and motion artifact is well known.18 In order to minimize the 	
influence of these factors in the subsequent phases of the PPG analysis 	
for beat-to-beat estimation, a preprocessing stage is required. This 
step is comprised of:

XX Framing and windowing

XX Band-pass filtering (0.4 Hz to 4 Hz)
XX Automatic gain control (AGC) to limit the signal level
XX Signal smoothing and baseline wandering removal

The PPG input data is processed using a window of T0 seconds and further 
blocks are processed by moving the window with mT0 (that is, 	m = 3/4) 
overlap. A band-pass filter is then required to remove both high frequency 
components (such as power sources) of the PPG signals, as well as low 
frequency components such as changes in capillary density and venous 
blood volume, temperature variations, and so on. Figure 2a and 2b show     
a PPG signal before and after filtering. The filter has a cutoff frequency    
at 0.4 Hz and 4 Hz. The fundamental frequency of the HR ranges between 
0.4 Hz to 3 Hz. Therefore, using a range that is a little higher for beat-  
to-beat estimation allows us to include harmonics that emphasize the 
beat times. Sudden spikes are removed from the filtered signals using a 
median filter. Then, an AGC module limits the signal level to ±V volts in 
order to verify the selected peaks by checking the amplitude of the signal 
at a later stage. The durable PPG measuring process for HRV unavoid-
ably introduces another type of artifact, such as baseline wandering. 
Consequently, a low-pass finite impulse response (FIR) filter is used to 

Figure 1. Flowchart of the proposed beat-to-beat extraction algorithm comprised of (i) preprocessing and (ii) high resolution B2B extraction.

Figure 2. PPG plots.
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smooth the array of the PPG samples in the frame (shown in Figure 2c),   
to remove the baseline wandering noise, and to get a smoother signal  
for the delineation module.

High Resolution Beat-to-Beat Extraction Module
The beat-to-beat extraction algorithm consists of the following modules:

XX Interpolation

XX Delineation

XX High resolution beat-to-beat extraction

XX Signal quality metric

The output of the preprocessing module is fed to an interpolation block to 
increase the accuracy of the beat-to-beat extraction algorithm. If a PPG 
segment from t0 to tτ  is given in the first frame with a beat-to-beat 
interval of b0 and bτ, we linearly interpolate the beat-to-beat interval 
values using n points between the endpoints and then extract a high 
resolution beat-to-beat (for example, 1 ms resolution) from b0 and bτ. 
Next, the delineation module relies on both the signal morphology, as 
well as rhythmic information to extract the peaks and onsets. Therefore, not 
only are the systolic peaks needed, but also the onsets and dicrotic notches 
should be reported for beat-to-beat detection. The proposed delineator 
is theoretically similar to the one shown in the papers “An Adaptive 
Delineator for Photoplethysmography Waveforms”12  and “On an Automatic 
Delineator for Arterial Blood Pressure Waveforms,”16 and it is adapted     
to the wrist PPG signals by using a pair of inflection and zero-crossing 
points from the first derivative of the signal. Figure 2d plots both inflection  
and zero-crossing points for PPG characterization. For the zero-crossing 
points, the signal is processed with a zero phase distortion filter that 
minimizes startup and ending transients by matching initial conditions. 
This is to make sure that the time-domain features are preserved after 
filtering. Note that the onsets from the derivative of the PPG waveform 
correspond to zero-crossing points before a maximal inflection, while   
the systolic peak relates to zero-crossings after that inflection point. The 
signal quality metric used for this beat-to-beat algorithm is clarity and 
indicates the extent that a signal has a tone. This metric was originally 
proposed in the Philip McLeod and Geoff Wyvill article, “A Smarter Way to 
Find Pitch,”19 where a normalized squared difference function (a form of 
autocorrelation function) is used for finding the periodicity of the signal.    
We use this metric to decide when the beat-to-beat algorithm is confident      
to report the peaks and onsets.

Evaluation Results from the ADI  Wrist Platform
Our PPG beat-to-beat algorithm results are compared to results from 
the Pan-Tompkins algorithm,20 which is a well-recognized algorithm for 
ECG peak detection. Data was collected to evaluate our algorithm using 
the ADI Vital Signs Monitoring (VSM) wrist watch platform. The ADI VSM 

iOS application was used to interface with the watch over a Bluetooth® 

connection. The ADI wrist watch includes a PPG sensor used to collect 
PPG signal from the subject’s wrist. The ECG signal was also collected 	
on the ADI wrist watch. Three ECG electrodes were attached to the 
subject’s chest area. Wires from these electrodes were connected 
to the ADI wrist watch where the signals were processed and logged 
concurrently with the PPG signal. This platform provides synchronized  
PPG and ECG signals. Figure 3a shows the ADI wrist watch used for 
data collection while Figure 3b shows the iOS app interface and sample 
signals obtained from the platform.

Evaluation Metrics and Results
Before computing the beat-to-beat metrics, it is important to have an 
outlier removal process that identifies missing/extra peaks in the   
Pan-Tompkins algorithm outputs and our PPG beat-to-beat algorithm 
outputs. Ignoring missing/extra peaks causes abnormal beat durations  
that would lead to inaccurate results. Missing/extra peaks in the ECG 
signal were identified by looking at the successive beat durations 
provided by the Pan-Tompkins algorithm. Any ECG peak that changed 
the beat duration by more than 20% was labeled an outlier. After removing 
these ECG peaks, missing/extra peaks in the PPG signal were identified by 
correlating each ECG peak with a peak in the PPG signal. A PPG peak  
was correlated with an ECG peak if it is within time proximity of the 
ECG peak. When a PPG peak cannot be identified or too many peaks are 
identified within the time proximity of an ECG peak, these were identified    
as outliers. The abnormal beat durations that these missing/extra PPG 
beats would cause are ignored as outliers during metrics calculations.

A number of metrics are computed using the beat-to-beat values from  
our proposed algorithm and from the Pan-Tompkins algorithm. These 
metrics are: (i) coverage (Equation 1); (ii) Sensitivity or Se (Equation 2); (iii) 
positive predictivity or P+ (Equation 3); and (iv) root mean square of 
successive differences or RMSSD (Equation 4). Figure 4 presents a 
visual representation of some of the values used for the metrics calculations.

Coverage
#Identified PPG Peaks
#Identified ECG Peaks=

Figure 3. ADI platform and tool.
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where TP (true positive) is the number of heart beats correctly identified    
by the PPG B2B algorithm, FP (false positive) is the number of PPG heart 
beats that did not correspond to an actual heart beat in the ECG, and FN 
(false negative) is the number of heart beats that the PPG beat-to- 
beat algorithm missed. The interbeat interval (IBI) is the time between 
successive ECG peaks, PPG peaks, or PPG onsets.

In order to evaluate our algorithm, PPG and ECG signals are collected 
simultaneously for each subject. Data was collected on a large number     
of subjects of different ages, skin tones, and body types. This was to ensure  
that our evaluation results would be relevant across all populations. Data     
is collected on 27 subjects (male and female with different skin tones) 
each for 2 minutes and 30 seconds. Subjects were asked to stand for    
the first half and sit for the second half of the time. Table 1 presents the 
average results of each of the metrics for the beat to beat algorithm. As 
shown in the table, the coverage, sensitivity, and positive predictivity  
are all above 83% with the average RMSSD difference below 20 ms for 
the wrist data as compared to the results from the ECG signals.

Figure 4. ECG and PPG signals with IBIs shown and the respective peaks and 
onsets from the beat-to-beat algorithm on the raw PPG signals. 

Table 1. Beat-to-Beat Metrics Results

Metric Result

Coverage 83%

Sensitivity 87%

Positive Predictivity 98%

Average PPG vs. ECG RM 12 ms

Discussion and Conclusion
A robust peak and onset detection algorithm for PRV analysis from wrist 
PPG signals was proposed in this article. The algorithm used multiple 
stages of preprocessing and suggested a hybrid delineation algorithm to 
detect the fiducial points of wrist PPG signals. The ADI multisensory 
watch was used as our evaluation platform to test the proposed 
algorithm. The results showed strong correlations and concordance 
with respect to the ECG HRV. Future work will focus on applying motion 
rejection algorithms and on dealing with the missing beats issue in   
the PRV analysis.
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